Locally Resonant Granular Chain
نویسندگان
چکیده
We report the design and testing of a tunable and nonlinear mechanical metamaterial, called locally resonant granular chain. It consists of a one-dimensional array of hollow spherical particles in contact, containing local resonators. The resonant particles are made of an aluminium outer spherical shell and a steel inner mass connected by a polymeric plastic structure acting as a spring. We characterize the linear spectra of the individual particles and of one-dimensional arrays of particles using theory, numerical analysis, and experiments. A wide band gap is observed as well as tunability of the dispersive spectrum by changing the applied static load. Finally, we experimentally explore the nonlinear dynamics of the resonant particles. By using nonlinear acoustical techniques, we reveal a complex, nonclassical nonlinear dynamics.
منابع مشابه
Breathers in a locally resonant granular chain with precompression
We study a locally resonant granular material in the form of a precompressed Hertzian chain with linear internal resonators. Using an asymptotic reduction, we derive an effective nonlinear Schrödinger (NLS) modulation equation. This, in turn, leads us to provide analytical evidence, subsequently corroborated numerically, for the existence of two distinct types of discrete breathers related to a...
متن کاملNonlinear waves in a strongly nonlinear resonant granular chain
We explore a recently proposed locally resonant granular system bearing harmonic internal resonators in a chain of beads interacting via Hertzian elastic contacts. In this system, we propose the existence of two types of configurations: (a) small-amplitude periodic traveling waves and (b) dark-breather solutions, i.e., exponentially localized, time periodic states mounted on top of a non-vanish...
متن کاملForce Chains and Resonant Behavior in Bending of a Granular Layer on an Elastic Support
In this paper we investigate the interaction between a granular layer and an elastic foundation using a coupled Discrete Element Method-Finite Element Method (DEM–FEM) computational model. We use this dynamics code to simulate quasi-static bending of the granular layer and we observe the changes taking place in the structure of the force chains for two cases: with and without rolling resistance...
متن کاملA universal scaling law of grain chain elasticity under pressure revealed by a simple force vibration method.
The grain contact force, the key player in determining the mechanical properties of grain materials, depends on the elastic modulus and deformation (δ) of grains. However, our knowledge on their relationship in a three-dimensional granular medium is limited mainly owing to the difficulty of realizing direct experimental investigation. Using a simple force vibration technique, we measure the dis...
متن کاملGranular metamaterials for vibration mitigation
Acoustic metamaterials that allow low-frequency band gaps are interesting for many practical engineering applications, where vibration control and sound insulation are necessary. In most prior studies, the mechanical response of these structures has been described using linear continuum approximations. In this work, we experimentally and theoretically address the formation of low-frequency band...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014